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Abstract. We show how to generate bilinear (quadratic) Hamiltonians in cavity quantum electrodynam-
ics (QED) through the interaction of a single driven three-level atom with two (one) cavity modes. With
this scheme it is possible to generate one-mode mesoscopic squeezed superpositions, two-mode entangle-
ments, and two-mode squeezed vacuum states (such the original EPR state), without the need for Ramsey
zones and external parametric amplification. The degree of squeezing achieved is up to 99% with cur-
rently feasible experimental parameters and the errors due to dissipative mechanisms become practically
negligible.

PACS. 32.80.-t Photon interactions with atoms – 42.50.Ct Quantum description of interaction of light
and matter; related experiments – 42.50.Dv Nonclassical states of the electromagnetic field, including
entangled photon states; quantum state engineering and measurements

The preparation of Einstein-Podolsky-Rosen (EPR) en-
tanglement [1] has been a challenge for theoretical and
experimental physics since the introduction of the Bell in-
equalities [2] to test for nonlocal correlations. Over the
last few decades a plethora of experimental confirma-
tions of nonlocal correlation has contributed to widen-
ing the perspectives for applications of this fundamental
phenomenon, from quantum teleportation [3] to computa-
tion [4]. Equally impressive are the applications proposed
for squeezed states, ranging from fundamental physics
to technology. Possible ways of measuring gravitational
waves through squeezed fields [5] and of deepening our
understanding of the properties of radiation [6] and its in-
teraction with matter [7] have been pursued alongside the
preparation of such nonclassical states.

The preparation of squeezed light, supplied by non-
linear optical media as running waves [8] and standing
squeezed fields in high-Q cavities and ion traps, generated
through atom-field interaction [9], has already been inves-
tigated. The issue of squeezing an arbitrary previously-
prepared cavity-field state |Ψ〉 had not been addressed
until references [10,11]. Working with Rydberg atoms in
the microwave regime, in this letter, we present a feasi-
ble enhanced scheme to engineer bilinear Hamiltonians in
cavity QED. As in references [10,11], this is accomplished
through the interactions of a single three-level atom si-
multaneously with a classical driving field and a two-mode
cavity. However, the new scheme exhibits a crucial differ-
ence from the two previous ones [10,11], both of which op-
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erate only in the weak-amplification regime, owing to the
adiabatic approximation required. Here, both the para-
metric up- and down-conversions (PUC and PDC) are
also derived for the strong-amplification regime, where the
strength of the bilinear and quadratic interactions between
the cavity modes are considerably increased. Hence, a
smaller atom-field interaction time is required for state en-
gineering purposes and, consequently, the atom-field dissi-
pative mechanisms become negligible. These interactions
are used to generate superpositions of highly-squeezed
states, two-mode squeezed vacuum states (such as the
EPR state), the even and odd EPR states, and entan-
glements of coherent states. Such states, generated with-
out the need for Ramsey zones and external paramet-
ric amplification, can be employed either for fundamental
tests of quantum mechanics or to manipulate quantum
information.

PDC

Consider the atomic levels in the ladder configuration, as
shown in Figure 1a. The ground |g〉 and excited |e〉 states
are coupled through an intermediate level |i〉. The cav-
ity modes ωa and ωb (ωa + ωb = 2ω0) are tuned to the
vicinity of the dipole-allowed transitions |g〉 ↔ |i〉 and
|e〉 ↔ |i〉 with coupling constants λa and λb, respectively,
and detuning ∆ = ω0 + ωi − ωa = − (ω0 − ωi − ωb).
The desired interaction between the modes ωa and ωb

is accomplished by driving out of resonance the dipole-
forbidden atomic transition |g〉 ↔ |e〉 [12] with a classical
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Fig. 1. Energy diagram of a three-level atomic system in the
(a) ladder and (b) lambda configurations.

field of frequency ω = 2(ω0 − δ) and coupling constant Ω.
Within the rotating-wave approximation, the Hamiltonian
is given by H = H0 + V (t), where (with � = 1)

H0 = ωaa
†a+ ωbb

†b+ ω0 (σee − σgg) + ωiσii, (1a)

V (t) =
(
λaaσig + λbbσei +Ω e−iωt σeg + h.c.

)
. (1b)

With a† (a) and b† (b) standing for the creation (annihila-
tion) operators of the quantized cavity modes, while σkl ≡
|k〉 〈l| (k, l being the atomic states). In a frame rotating
with the driving-field frequency, obtained through the uni-
tary operator U = exp

[−iωt (a†a+ b†b+ σee − σgg

)
/2

]
,

the transformed Hamiltonian H̃ = H̃0 + Ṽ is given
by H̃0 = δaa

†a + δbb
†b + δ(σee − σgg) + ωiσii +

(Ωσeg + h.c.) and Ṽ = (λaaσig + λbbσei + h.c.), where
δ� = ω� − ω/2 (� = a, b). Assuming that δ �
|Ω| and defining a new basis for the atomic states{|i〉 , |±〉 =

(± eiϕ/2 |g〉 + e−iϕ/2 |e〉) /√2
}

[13], composed

of eigenstates of the free atomic Hamiltonian, we obtain
in the interaction picture

H(t) = λa eiϕ/2 a
ei(∆−|Ω|−δ)t σi+ + ei(∆+|Ω|−δ)t σi−√

2

+λb eiϕ/2 b
e−i(∆−|Ω|+δ)t σ+i + e−i(∆+|Ω|+δ)t σ−i√

2
+h.c.

(2)

where Ω = |Ω| e−iϕ. In what follows we discuss two
regimes of the classical amplification field: the weak
(|λa| , |λb| < |Ω| � ∆) and the strong (|Ω| �
∆, |λa| , |λb|) amplification regimes. In both cases, the
Hamiltonian (2) consists of highly oscillating terms and
to a good approximation we finally obtain the Hamilto-
nian Heff (t) = −iH(t)

∫ H(τ)dτ [14], given by

Heff (t) � 1
∆2 − |Ω|2

[
∆ |λa|2 aa† +∆ |λb|2 b†b

− |Ω| (λaλb e−2iδt ab+ h.c.
) ]
σii

− 1
2 (∆− |Ω|)

[
|λa|2 a†a+ |λb|2 bb†

+
(
λaλb e−2iδt ab+ h.c.

) ]
σ++

− 1
2 (∆+ |Ω|)

[
|λa|2 a†a+ |λb|2 bb†

− (
λaλb e−2iδt ab+ h.c.

) ]
σ−−. (3)

PDC in the weak-amplification regime

To implement this regime it is sufficient to assume that
|λa| ∼ |λb|, ∆ � 10 × |λa| and |Ω| ∼ 2 |λa|. Starting
with the atomic state prepared in subspace {|i〉} or {|±〉},
and adjusting δ such that δi = −(|λa|2 + |λb|2)/∆ or
δ± = (|λa|2 + |λb|2)/2(∆ ∓ |Ω|) ≈ (|λa|2 + |λb|2)/2∆,
we obtain from equation (3), after the unitary transfor-
mation exp{−it(|λa|2 a†a + |λb|2 b†b)[σii/∆ − σ++/2(∆−
|Ω|) − σ−−/2(∆+ |Ω|)]}, respectively

Hi �
(
ξiab+ ξ∗i a

†b†
)
σii, (4a)

H± � (
ξ±ab+ ξ∗±a

†b†
)
(σ−− − σ++) , (4b)

where ξi = Ω∗λaλb/∆
2 and ξ± = λaλb eiϕ /2 (∆∓ |Ω|) ≈

λaλb eiϕ /2∆ ≡ ξ. We observe that Hamiltonian (4a)
was used in reference [11] to generate squeezed states
and the original Einstein-Podolsky-Rosen (EPR) entan-
glement, expanded in the Fock representation, in two-
mode cavity QED. However, with the present technique,
Hamiltonian (4b) has the advantage that the coupling
parameter ξ± is at least one order of magnitude larger
than ξi; consequently, the atom-field interaction time re-
quired to obtain a high-“quality” EPR state can be con-
siderably shorter, making the dissipative effects negligible.
Starting with the atom in the state |±〉, both cavity modes
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being in their vacuum states, and applying the interaction
in equation (4b) during the time interval τ , the evolved
two-mode state reads

e−iH±τ |±〉 |0, 0〉ab = |±〉
∞∑

n=0

[± tanh (|ξ| τ)]n
cosh (|ξ| τ) |n, n〉ab

= |±〉 |ψ±(τ)〉ab , (5)

where we have adjusted the coupling constants λa, λb

and classical phase ϕ so that ξ = i |ξ|. State |ψ+(τ)〉ab is
the two-mode squeezed vacuum state which, in the limit
|ξ| τ → ∞ (and projected into the positional basis of
modes a and b), is exactly the original entanglement used
in the EPR argument against the uncertainty principle [1].

To estimate the “quality” of the prepared EPR state
|ψ+(τ)〉ab we compute the mean values [15] (∆x)2 =
〈(xa − xb)

2〉 = e−2|ξ|τ /2 and (∆p)2 = 〈(pa + pb)
2〉 =

e−2|ξ|τ /2, where xβ = (β + β†)/2 and pβ = −i(β − β†)/2
(β = a, b) are the field quadratures. We obtain the re-
sult (∆x)2 + (∆p)2 = e−2|ξ|τ which goes to zero for
the ideal EPR state (|ξ| τ → ∞) and to unity for an
entirely separable state [15]. Therefore, the expression
1 − e−2|ξ|τ can be used to estimate the quality of the
prepared EPR state. Assuming typical values for the pa-
rameters involved in cavity QED experiments, we get
|λa| ∼ |λb| ∼ 3 × 105 s−1 [16]. With the detuning
∆ ∼ 10 × |λa|, it follows that |ξ| ∼ 1.5 × 104 s−1, and
assuming the interaction time τ ∼ 5 × 10−5 s, we obtain
|ξ| τ = 0.75 which is larger than the value 0.69 achieved for
building the EPR state for unconditional quantum tele-
portation in the running-wave domain [17]. The resulting
quality of the prepared EPR state is 1 − e−2|ξ|τ ∼ 0.78.
(This should be compared with the EPR state engineered
through Hamiltonian (4a) in reference [11], where the
above cavity QED parameters lead to |ξi| ∼ 6×103 and the
quality 1 − e−2|ξi|τ ∼ 0.45.) The interaction time consid-
ered here is about three (one) orders of magnitude smaller
than the field (atom) decay time in experiments employing
closed microwave cavities [18], and about two (three) or-
ders of magnitude smaller than the field (atom) decay time
in experiments with open microwave cavities [16]. Conse-
quently, the dissipative mechanism becomes negligible. We
also note that the proposed scheme, where classical fields
are necessary to induce a Raman transition (see [12]), is
better suited for open cavities, although closed microwave
cavities can be used as well (see discussion in [13]).

Besides having the advantage that ξ ∼ 5ξi, this tech-
nique makes it is possible to generate mesoscopic su-
perposition states, when preparing the atom, for exam-
ple, in the excited state |e〉 = eiϕ/2 (|+〉 + |−〉) /√2.
(i) In the nondegenerate PDC, starting with both cav-
ity modes in their vacuum states and applying the in-
teraction in equation (4b) during the time interval τ ,
we generate the superposition of two-mode vacuum
squeezed states |ψ(τ)〉ab = N±(e−i|Ω|τ |ψ+(τ)〉ab |+〉 +
ei|Ω|τ |ψ−(τ)〉ab |−〉). Adjusting |Ω| τ = 2π and measur-
ing the atomic state after the atom-field interaction, we

obtain the even and odd EPR states, which we define as
∣∣
∣Ψ(even

odd )
〉

ab
= N± (|ψ+(τ)〉ab ± |ψ−(τ)〉)

= N±
∞∑

n=0

[1 ± (−1)n]
[tanh (|ξ| τ)]n
cosh (|ξ| τ) |n, n〉ab .

(6)

Similarly to the even and odd coherent states [19],
〈ψ±(τ) |ψ∓(τ)〉 = cosh−1(2 |ξ| τ) ∼ 2 e−2|ξ|τ for
2 |ξ| τ � 1, while 〈Ψeven |Ψodd〉ab = 0. (ii) In the
degenerate PDC (ωa = ωb), the engineered cavity-
field superposition, after the atom-field interaction and
the measurement of the atomic state, is written as
|Φ (τ)〉 = N±

[
e−i|Ω|τ S(ξ, τ) ± eiΩτ S−1(ξ, τ)

] |Φ (0)〉,
where S(ξ, τ) = exp

[−i (ξa†2 + ξ∗a2
)
τ
]

stands for the
squeeze operator (with the squeezing factor r = 2 |ξ| τ),
and the + (−) sign occurs if the atom is detected in
state |e〉 (|g〉). We note that the components of the super-
position |Φ (τ)〉 are squeezed in perpendicular directions.
Besides the large coupling strength |ξ| achieved, another
advantage of the present scheme to generate the superpo-
sitions in equation (6) and |Φ (τ)〉 is that no Ramsey zones
or external parametric amplification are required. We also
note that the degenerate PDC can be implemented con-
sidering non-circular Rydberg states in an appropriated
configuration as discussed in reference [20].

To estimate the degree of squeezing achieved with the
present scheme we consider the degenerate PDC, starting
with the cavity mode prepared in a coherent state |α〉 and
the atom prepared in the state |+〉. The variance in the
squeezed quadrature of the generated coherent squeezed
state S(ξ, τ) |α〉 is 〈∆X〉2 = e−4|ξ|τ /4. Assuming the typ-
ical cavity-QED values defined above for |λa|, |λb|, ∆, and
τ , we finally obtain the squeezing factor r = 2 |ξ| τ = 1.5.
With such values, the variance in the squeezed quadra-
ture turns out to be 〈∆X〉2 ∼ 1.2 × 10−2, representing a
squeezing around 95%.

PDC in the strong-amplification regime

Here we assume that |λa| ∼ |λb| � ∆ and |Ω| � 10× |λa|.
For the atomic state prepared in subspace {|i〉} or {|±〉},
and assuming δ = 0, we obtain from (3) the Hamiltonians

Hi � − (
ζiab+ ζ∗i a

†b†
)
σii, (7a)

H± � 1
2 |Ω|

(
|λa|2 a†a+ |λb|2 bb†

)
(σ++ − σ−−)

+
(
ζ±ab+ ζ∗±a

†b†
)
(σ++ + σ−−) , (7b)

where ζi = λaλb eiϕ / |Ω| and ζ± = λaλb/2 (|Ω| ∓∆) ≈
λaλb/2 |Ω| ≡ ζ. Differently from the weak-amplification
regime, here we may assume ∆ = 0. Note that apart from
the global phase, Hamiltonian (7a) is exactly the same
as (4a), but with the advantage that ζi ∼ 10 × ξi. With
the cavity-QED experimental parameters defined above,
we obtain |ζi| τ = 1.5, so that the EPR state generated
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through Hamiltonian (7a) has the quality 1 − e−2|ζi|τ ∼
0.95. Hence, in the degenerate PDC, the squeezing factor
obtained when engineering a squeezed coherent state from
Hamiltonian (7a) is 2 |ζi| τ = 3.0 and the variance in the
squeezed quadrature becomes 〈∆X〉2 ∼ 6.2×10−4, leading
to a squeezing of 99.7%.

Hamiltonian (7b) also possesses considerable advan-
tages, compared to equation (4a), even though ζ ∼ ξ
(for the parameter values assumed so far). Considering
again the degenerate PDC process and the atom pre-
pared in the excited state |e〉 = eiϕ/2 (|+〉 + |−〉) /√2, the
resulting Hamiltonian, leading to two uncoupled evolu-
tions for the atom-field system, depending on the atomic
state |+〉 or |−〉, is written in the Schrödinger picture as
H± = (ω ± χ) a†a + (ζ e−2iωt

(
a†

)2 + ζ∗ e2iωt a2), with
χ = (|λa|2 + |λb|2)/2 |Ω| (∼ 2 |ζ|). This Hamiltonian
was analyzed in detail in reference [22], using the time-
dependent invariants by Lewis and Riesenfeld [21] and for
the values presented above it corresponds to the case of
critical coupling, where |ζ| /2χ = 1. Starting from the ini-
tial state eiϕ/2 (|+〉 + |−〉) |α〉 /√2, |α〉 being a coherent
state injected into the cavity, the evolved superposition
reads (|+〉U+ + |−〉U−) |α〉 /√2, where U± stands for the
evolution operator associated with Hamiltonian H±, as
derived in reference [22]. After interacting with the cavity
mode, during the time interval τ , the atomic state is mea-
sured and we finally obtain the cavity-field superposition

|Ψ(τ)〉 = N±
(
e−i|Ω|τ U+ ± ei|Ω|τ U−

)
|α〉 , (8)

where the sign +(−) arises from the detection of the
state |e〉 (|g〉). The interesting feature of this scheme
for engineering a squeezed “Schrödinger cat”-like state
is that no Ramsey zones or external parametric ampli-
fication field are needed, differently from reference [22].
The squeezing factor achieved, r = arcsinh(2 |ζ| τ), com-
puted in reference [22], is around 1.2, assuming typical
parameters in cavity QED. It has been shown in refer-
ence [22] that the decoherence time of such mesoscopic
superposition could be around the relaxation time of the
cavity field when assuming a particular squeezed reservoir
at absolute zero. This reservoir must be composed of os-
cillators squeezed in a direction perpendicular to that of
the superposition state. Therefore, in this paper we have
solved partially the problem of engineering a truly meso-
scopic state in cavity QED. The task of engineering an
optimal squeezed reservoir in cavity QED remains to be
achieved. In reference [23] the authors show how to pre-
pared a partially-squeezed reservoir in cavity QED.

PUC

Now, the energy diagram of the Rydberg three-level atom
is in the Λ configuration, where the ground and excited
states are coupled through an auxiliary more-excited level,
as in Figure 1b. The cavity microwave modes of frequen-
cies ωa and ωb (ωa − ωb = 2ω0) enable both dipole-
allowed transitions |g〉 ↔ |i〉 and |e〉 ↔ |i〉, with cou-
pling constants λa and λb, respectively, and detuning

∆ = ωi + ω0 − ωa = ωi − ω0 − ωb. (Evidently, in this case
we can assume at most two levels as circular Rydberg
states.) A classical field of frequency ω = 2 (ω0 − δ), driv-
ing the atomic transition |g〉 ↔ |e〉 with coupling con-
stant Ω, leads to the desired interaction between the
modes ωa and ωb. Within the rotating wave approxima-
tion, the Hamiltonian H = H0 + V (t), is given by

H0 = �ωaa
†a+ �ωbb

†b+ �ωgσgg + �ωeσee + �ωiσii,
(9a)

V (t) = �
(
λaaσig + λbbσie +Ωe−iωtσge + h.c.

)
. (9b)

Following analogous steps to those used in the above anal-
ysis for the PDC, we obtain the effective Hamiltonian for
the PUC.

PUC in the weak-amplification regime

From an atomic state prepared in subspace {|i〉} or {|±〉},
adjusting δ as δi = (|λb|2 − |λa|2)/2∆ or δ± = (|λa|2 −
|λb|2)/4(∆ ∓ |Ω|) ≈ (|λa|2 − |λb|2)/4∆, we obtain,
respectively

Hi �
(
γiab

† + γ∗i a
†b

) |i〉 〈i| , (10a)

H± � (
γ±ab† + γ∗±a

†b
)
(|−〉 〈−| − |+〉 〈+|) , (10b)

where γi = |Ω|λaλ
∗
b eiϕ /∆2 and γ± = λaλ

∗
b eiϕ /2(∆ ∓

|Ω|) ≈ λaλ
∗
b eiϕ /2∆ ≡ γ. After preparing the atom in

the ground state and mode ωa (ωb) in the coherent state
|α〉a (|β〉b), the interaction (10b) can be used to gen-
erate cavity-field entangled states (without the need for
Ramsey zones) such as |ψ(τ)〉ab = (e|γ|τ(ab†−a†b) |+〉 +
e−|γ|τ(ab†−a†b) |−〉) |α, β〉ab /

√
2, where we have assumed

γ = −i |γ|. Adjusting the atom-field interaction time so
that |γ| τ = π/2, we obtain, after the atomic-state detec-
tion, |ψ±(τ)〉ab = N±

(
e−i|Ω|τ |β,−α〉 ± ei|Ω|τ |−β, α〉),

where the + (−) sign occurs if the atom is detected in
state |e〉 (|g〉).

PUC in the strong-amplification regime

In this case, we obtain exactly the Hamiltonians in equa-
tions (10a) and (10b), but with coupling strengths ηi =
λaλ

∗
b eiϕ / |Ω| and η± = ∓λaλ

∗
b eiϕ /2 |Ω|. Since ηi is

around an order of magnitude larger than γi, beam-
splitter operations can be realized in the strong-
amplification regime with a smaller atom-field interaction
time.

Finally, we discuss some possible error sources in
our scheme, starting with the validity of the effective
Hamiltonians coming from the approximation Heff (t) =
−iH(t)

∫ H(τ)dτ . In order to compare the evolutions gov-
erned by the effective Hamiltonians Hi and H±, for the
PUC, with those calculated without this approximation,
defined in equations (9a) and (9b), we computed numer-
ically the time evolution of the initial states |i〉 |1〉a |0〉b
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and |±〉 |1〉a |0〉b in both cases. For the experimental pa-
rameters defined above, the divergence between the curves
is about 5% in both regimes of amplification. Evidently,
when considering a ratio ∆/ |λa| > 10 (|Ω| / |λa| > 10)
in the weak (strong) coupling regime, the approximation
becomes even better, at the expense of a larger atom-field
interaction time.

Focusing on the squeezed coherent state engineered in
the degenerate PDC in the strong-amplification regime,
we have estimated the squeezing factor r̃ = 2 |ζi| (1 −
e−Γaτ )/Γa and the variance of the squeezed quadra-
ture 〈∆X̃〉2 =

[
1 − (

1 − e−2r̃
)
e−Γcτ

]
/4 taking into ac-

count the cavity damping rate (Γc) and the atomic decay
(Γa), which are introduced phenomenologically following
the reasoning in reference [10]. Considering non-circular
Rydberg states in experiments with open cavities, such
that Γc ∼ 103 s−1 [16] and Γa ∼ 5 × 103 s−1, together
with the values assumed above and an atom-field interac-
tion time about τ ∼ 5 × 10−5 s, we obtain r̃ ∼ 2.6 and
〈∆X〉2 ∼ 1.3×10−2, representing a squeezing around 95%.
As mentioned above, for the atom-field interaction time
required in our technique, the dissipative mechanism be-
comes practically negligible. We finally mention that a
sample of N identical atoms may be employed to enhance
the squeezing factor as recently considered by Guzman
et al. [24].
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